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Abstract 
    The emergence of new computing paradigms like mobile cloud, mobile edge computing, fog 
computing, artificial intelligence, and 5G opens up opportunities to enhance mobile learning 
outcomes across various subjects. By relocating processing capabilities to the network's edge, 
where mobile-learning agents can readily access them, this study explores the potential of these 
paradigms. A novel mobile computing hierarchical architecture is proposed to revolutionize 
mobile learning effectiveness. This architecture offers benefits such as reduced response times, 
minimized delays, and on-site data processing. This local data processing lessens the demand on 
radio access bandwidth, enhances data privacy, and enables uninterrupted app functionality even 
during network disruptions. This adaptable framework can be customized, reconfigured, and 
integrated with other computing approaches. While designing IoT-based mobile learning use 
cases, learner-specific resource requirements must be considered. Incorporating complex use 
cases will expand the architecture's foundation, boost the adoption of MEC-based learning 
models, and reshape the dynamics of education across disciplines. 
Keywords: Mobile learning,  Cloud computing,  Edge computing, IoT, Delay. 
 
1. Introduction 
Using smart mobile devices in a mobile setting, Mobile Learning actors (i.e. students and 
instructors) can accomplish learning and teaching goals. It creates a system that includes Mobile 
Learning actors, Mobile Learning content, and Mobile Learning technologies for delivering 
education [2]. Learning materials and actor interactions can be accessed at any time and from any 
location [3]. Users can make use of a number of Mobile Learning's promising affordances thanks 
to the widespread dissemination and integration of communication and cloud technologies [4]. 
The remarkable features of new technologies inspire and illustrate new forms of mobile education 
[5]. Guided learning, synchronous sharing, and contextual mobile learning [3] are just a few 
examples of novel methods of education that are made possible by the development of new 
technology. In addition, there are significant advantages that Mobile Learning students can make 
use of learning, collaborative learning, seamless learning, and interactive learning [3] with the 
use of cutting-edge computing paradigms. For instance, the resource augmentation of mobile 
devices and energy-efficient application performance are both made possible by the mobile cloud 
computing paradigm [6]. Students who are constantly on the go have an increased demand for 
rapid communication and content exchange through their registered learning management system 
(LMS) [7]. mobile learning platforms hosted in the cloud [8] improve location-aware, context-
aware, and situated learning [2], but struggle to enable real-time communication like video chats 
because of delays in data transmission. Edge, mobile edge, and fog computing are all examples 
of emerging computing paradigms (ECPs) that have desirable qualities for addressing delay 
problems [9]. Therefore, the current research endeavors to understand more about these 



1355 
Journal of New Zealand Studies NS35 July (2023), https://doi.org/ 10.5281/zenodo.7805686 

 

computing paradigms and how they may be integrated into Mobile Learning platforms. 
The efficiency of Mobile Learning applications running in the cloud on mobile devices is highly 
dependent on the quality of your wireless connection to the cloud [4], using a wireless connection 
means your performance efficiency will fluctuate. Due to the cloud-based nature of the 
processing, Mobile Learning actors here have unreliable network connections and have less say 
over the actual execution of the training [10]. Resource-intensive processes, such as the 
distribution of multimedia learning information, are difficult to execute due to delay concerns in 
the execution process. Furthermore, security and privacy violations might occur during the 
execution cycle, compromising actors' private information [11,12]. Indeed, delay is a major issue 
and an important factor affecting the performance of the Mobile Learning system. To the best of 
the authors' knowledge, none of the studies has taken delay into account as a major factor for 
optimizing Mobile Learning performance.   Recently, edge-based architecture opened up 
opportunities for performing data processing and resource-intensive operations locally at several 
endpoints rather than in centralized clouds [13,14]. There is also a lack of research into 
performance optimization using novel designs like mobile edge/fog. 
The researchers and developers of mobile learning applications need to understand that the edge 
is where computing is headed in the future. They need to think about the features of developing 
computing paradigms [16] and the capabilities of freshly emerging architectures [15] to improve 
Mobile Learning results. The Internet of Things, the edge, the mobile edge, and the fog are all 
examples of such paradigms that provide many tools for raising productivity. Indeed, combining 
these computing paradigms allows a platform to have access to resource-rich educational 
information, run applications in real-time, and analyze data locally in milliseconds [9]. In 
addition, the 5G network creates a reliable method of operation for Mobile Learning applications 
based on AI, such as VR. Mobile Learning architectures built on such principles allow actors in 
Mobile Learning scenarios to experience ultra-low delay and fast response time. Thus, this study 
takes into account the research demands for enhancing the quality of learning-teaching dynamics. 
To improve Mobile Learning's efficacy and users' quality of experience, this research delves into 
the features of new computing paradigms. By proposing a layered design [11] based on the ETSI 
MEC ISG framework [17,18], it fills a gap in the existing literature. The efficiency of the design 
is tested by running a real-time use case on it. The findings demonstrate that ultra-low delay, and 
short access time, affect actors' adoptability intentions, and raise Mobile Learning usage from 
dissatisfactory [5] to a satisfying level. In addition, it does a SWOT analysis of Mobile Learning 
performance on cutting-edge architectures. This study uses the gaps in knowledge to inform the 
research questions discussed in Sections 3 and 4. 
RQ1.   How do new forms of computing, such as the Internet of Things, the edge, mobile edge, 
fog, artificial intelligence, and the 5G network, interact with cloud-based Mobile Learning 
architectures? 
RQ2. To what extent do new architectures remove constraints from mobile learning while also 
enhancing performance for mobile learning actors? 
 
2. Method 
   The research presented here investigates potential Mobile Learning applications in new forms 
of computer architecture. Section 3 explains how this approach explores the potential properties 
of various paradigms and merges them into a layered design to improve performance. It does 



1356 
Journal of New Zealand Studies NS35 July (2023), https://doi.org/ 10.5281/zenodo.7805686 

 

things like run a real-world use case, analyze strengths and weaknesses, and test out new designs. 
Possibilities for Mobile-Based Education in ECPs  
New computing paradigms improve the effectiveness of cloud-based mobile learning in several 
ways [19], including enhancing functionality, altering the learning experience, and introducing 
new measures of success. These theories form the basis for cutting-edge Mobile Learning 
architectures, advance communicative interactivity, refine data processing, and tackle issues of 
quality assurance [20]. They also provide low delay, context-aware processing, and high 
performance [9]. Indeed, 
The benefits to Mobile Learning actors are substantial [20,22], and the integration of these 
paradigms provides tremendous momentum [21]. The productivity of Mobile Learning systems 
is maximized by their integrated Mobile Learning frameworks and the efficient application of 
LMSs [7]. For instance, Mobile Learning architectures embedded in the fog or on the edge reduce 
delay and increase access to educational resources [22]. Intelligently analyzing learning data is 
made easier by AI with machine learning [23]. It is expected that Mobile Learning data would be 
processed efficiently and locally by fog and edge computing in 5G networks [24]. 
(i) Mobile Learning on the Cloud: Mobile cloud computing (MCC) offers various beneficial 
aspects that effectively extend to ubiquitous learning, overcoming the limits of conventional 
Mobile Learning systems. Mobile cloud computing (MCC) is a paradigm that combines mobile 
devices and cloud storage [4]. To run a Mobile Learning application, mobile cloud architecture 
(MCA) must be used by the Mobile Learning models that MCC is based on. By moving resource-
intensive application execution duties to highly-resourced cloud infrastructure, the MCA 
enhances the computation and communication capabilities of mobile devices [25]. It's the 
standard approach to running power-hungry programs on low-powered gadgets. The MCA 
provides Mobile Learning actors with context-aware (i.e. learner-centered), multitenancy 
(collaborative learning), hetero-genes, and universal accessibility [11]. Through MCA, mobile 
learning actors can efficiently scale and make use of virtual resources [10]. Save battery life, 
boost processing power, add more storage space, and expandability are just some of the benefits 
of the MCA [26]. Furthermore, Mobile Learning models, such as hybrid Mobile Learning, Mobile 
Learning based on augmented reality [27], and Mobile Learning based on mobile agents [11], 
need to be redesigned to be more specialized. 
(ii) Mobile cloud Mobile Learning systems: These systems improve the learning-teaching 
process in general, and multi-media learning content in particular, on the go. These programs 
improve system accessibility, content availability, the quality of educational materials, and user-
friendliness. LMSs like Moodle and Blackboard, for example, are widely used because of the 
many advantages they present in a variety of academic fields. Since Moodle is freely available, 
its deployment in educational institutions requires less money and resources in terms of hardware 
and software [8,9]. Nonetheless, Blackboard Learn is another sophisticated LMS with open 
architecture customization and adaptable teaching methods [28]. It's a fully dynamic platform, it 
has tools for delivering courses, and it helps Mobile Learning actors succeed in their studies. In 
the same vein as other mobile LMSs, intelligent tutoring systems (ITS) provide instruction in 
both general and specialized computer use. It helps both students and teachers by keeping track 
of their development and providing updates on that progress [9]. 
(iii) Applications for mobile learning that take advantage of the Internet of Things: 
Deploying such applications on IoT platforms and integrating them with IoT devices are in their 
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infancy. During application execution, Mobile Learning systems must include the data supplied 
by IoT learning devices. Such integration provides students with a first-hand look at computing 
in action [9]. For instance, medical education makes extensive use of mobile IoT and learning 
applications. 
Patients and students alike now have RFID tags and wearable sensors built into their bodies and 
mobile devices. When students approach patients, their mobile devices will show information 
about the patients' conditions. Teachers' mobile devices also show similar data, allowing them to 
keep tabs on students' physical assessment activities [9]. Next-generation learning management 
systems (LMSs) will revolve around Internet of Things (IoT) devices, necessitating compliance 
with integration principles for IoT devices and mobile learning activities in a digital setting. 
Systematic evaluations of students' recognizing spoken phrases and capturing spontaneous 
moments while engaging in a variety of digital lessons. 
 (iv) Mobile edge-based Mobile Learning: The cloud computing characteristics within the radio 
access network (RAN) [29] are made possible by mobile edge computing (MEC), which was 
introduced by the ETSI ISG on MEC [17]. Recent years have seen a surge in data volume [18] 
due to the proliferation of intelligent end devices and interactive applications. With the 
proliferation of Internet of Things (IoT) devices in the Mobile Learning ecosystem, edge 
computing has developed as a means to run Mobile Learning applications locally, where they 
may be used most efficiently. Edge computing is a new approach to data processing that is 
becoming increasingly popular [13,14] in place of traditional data centers and the cloud. The edge 
nodes lower latencies for a continuous and improved learning experience [16], and the edge is 
the instant first hop from locally distributed IoT devices. Indeed, an edge-based Mobile Learning 
architecture boosts seamless connectivity, privacy, delay, reduced network traffic [13,45], and 
the quality of life for actors at the moment. For example, it facilitates the deployment of cutting-
edge Mobile Learning apps in a school setting and the efficient delivery of multimedia learning 
content. As network traffic increases, its capacity increases [30], its services are distributed over 
several edge nodes, and a responsive LMS is necessary for optimal performance. 
It is acknowledged as a critical enabling factor for 5G and several important uses of the 5G system 
are determined [31]. 
(2) Mobile Learning and fog computing The volume of data produced and processed by IoT 
devices causes delays between the edge nodes and the cloud. Minimizing lag time and making 
optimal use of Internet of Things (IoT) devices is what fog is all about. Fog computing was first 
created by Cisco in 2014 to process data in real-time and have it executed on the nearest server 
[32]. Fog computing is now being used by academic institutions for data processing [21]. 
Institutions process data in tandem with major cloud conglomerates, but they do not upload 
everything to the cloud. These storage nodes are analogous to a fog that makes communication 
between edge devices used by learners and cloud data centers more efficient. Fog-cloud 
architecture-based mobile learning applications consider execution requirements [22] and run 
across learners' devices, fog nodes, and the cloud. Mobile context-aware and adaptive learning 
applications that run according to the instructions of the learners benefit greatly from such an 
architecture. Not only are these architectures compatible with 5G, but they also facilitate services 
like low delay, improved context awareness, and heightened operational efficiency and quality 
of service [20] for actors. 
Artificial intelligence (AI), also known as machine intelligence (MI), encompasses several 
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different fields of study (Q [33]). AI-based Mobile Learning systems and 5G are two such 
examples. It has ramifications for academia by tapping into the power of fiction and artificial 
intelligence [23]. When applied to learning applications and LMSs, AI uses machine learning and 
deep learning to revolutionize the educational experience and add intelligence to the process [34]. 
Because of the unique needs of each student, intelligent tutoring systems (ITS) are growing in 
popularity [23]. These ITS provide students with customized learning opportunities that are 
tailored to their specific needs. Tutors use a variety of approaches—linear, dialogic, and 
exploratory—based on the abilities of their students.  Socratic, an app developed by Google that 
allows students to record themselves asking questions, was released recently [35]. This program 
analyzes the students' speech and returns relevant results culled from the internet's wealth of 
educational material. The software also uses sophisticated, intelligent algorithms to help users 
step-by-step answer arithmetic problems, and it is a tremendous AI dig-up that can learn in any 
academic course. 
Innovative mobile learning tools built on the latest in computing paradigms are anticipated to 
perform better in the 5G network. Many countries are beginning to roll out 5G networks with 
speeds of 10–100 Gbps [24]. An efficient platform for data-heavy educational content can be 
found in the new architectures being deployed on 5G [18]. Video content lectures, multi-media 
content streaming, and instant video interaction are just a few examples of how these technologies 
can benefit greatly from this advancement. It will pave the way for cutting-edge possibilities in 
Mobile Learning applications that leverage IoT/edge/fog/artificial intelligence to enhance 
operational effectiveness. For Mobile Learning actors' in densely populated locations or those 
constantly in motion, this will be a game-changer [18]. 
 
3. The proposed framework 
   Cloud-based Mobile Learning systems face difficulties with real-time data transfer due to delay 
(F [36]). 
Alternate architectures that take into account the features of the new computing paradigms can 
be designed to avoid these setbacks. The MEC is a model that uses induced computing resources 
at the network's edge to reduce delay delays [18]. To achieve optimum efficiency in Mobile 
Learning performance, an envisioned Mobile Learning architecture design must incorporate 
MEC elements. 
In Fig. 1, the authors suggest an edge-cloud layered architecture that acquires layer-specific 
computing resources for the needs of running Mobile Learning applications. There are three 
primary components: (i) the edge devices (the devices used by the actors), (ii) the local edge, 
which is the infrastructure that supports the application and network workloads, and (iii) the 
cloud. It processes data in real-time, does computations at the edge, and keeps processing insights 
as it moves up the architecture's many levels. It incorporates mobile edge APIs [17,18] and 4G 
wireless network standards, expanding on the work of the ETSI MEC ISG. It enables ultra-
reliable low-delay communication and provides millisecond-predictable low-delay services. 
Also, it enables resource-intensive Mobile Learning scenarios like video content distribution, 
VR/AR apps, and more by providing enhanced mobile broadband (eMBB). The parts of the 
architecture are as follows. 
(1) Requirements and approaches to architecture: The network's requirements and the protocols 
it uses must be dynamically accommodated by the design. The server must be able to transmit 
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content quickly, manage bandwidth effectively, provide a virtualized environment for MEC 
applications, and make the most of every millisecond of available time [29]. It should be a unified 
system that can accommodate various learning management systems (LMSs) while also catering 
to individual academic institutions' requirements and desired outcomes in terms of student 
development and potential. It provides a gateway for incorporating new and emerging 
pedagogical requirements into ongoing projects. 
(2) The fundamental building blocks of architecture: It is a hierarchical, multi-layer architecture 
where the physical and application levels provide access to the available resources. 
Layer one is the physical layer, and it includes things like gadgets (IoT, edge, fog), network 
nodes, and cloud servers. Here, Mobile Learning and mobile-edge apps are hosted locally on the 
edge nodes. Edge gateways redirect data from student devices to local edge servers, bypassing 
the cloud entirely. APIs allow the server to process the students' requests in real-time and return 
the results to their devices[46, 47.48]. 
To execute mobile edge native and Mobile Learning-specific apps such as context-aware and 
delay-sensitive applications and improve users' interactions, the application layer provides APIs, 
distributed educational modules, and MEC application platform services. 
Typically, network administrators avoid using physical Equipment in the network for each user. 
In this situation, most of the switches and routers that make up the network layer are owned by 
the university [49, 50]. 
Figure 2 depicts the edge computing layer and its sub-layers, and it outlines the evolution of the 
architectural layer at the mobile base station. Furthermore, it demonstrates how its parts may be 
broken down into three distinct levels—the ME system level, the ME host level, and the network 
level [18]. The top-level system provides an overarching perspective on the ME infrastructure 
and the UEs' availability. The virtualized environment and the potential for deploying ME 
applications are both provided by the host level. The 3rd Generation Partnership Project (3GPP) 
cellular network, local access network, and external network [29] are all within the purview of 
the network level, where connectivity needs are managed. 
(1) The practicality of the building's design: The design facilitates efficient Mobile Learning 
performance, learner-centric services, and extremely low-level delay. In the current mobile cloud 
architecture setup, the MEC server is deployed at the edge, closer to the actors' proXimity, and 
where the following processes may be verified. 
The functionality can be evaluated while the program is running. The MEC server examines 
execution requests from actors and, if necessary, forwards them to higher layers via a layer profile 
request (LPR) message to access more powerful computational resources. 
Communication between the MEC server and the higher-layer computing resources is established 
through the execution of multiple components, including the local protocol identifier (LPR), 
message field identifier (MFI), requesting profile server hash value (RPSHV), transmission 
timestamp, profile acknowledge message (PAK), and profile-based component. In addition, the 
layer profile message (LPM) identifies the job definition, complete with a service determiner and 
a unique identifier. 
To ensure actors receive their requested content, the architecture executes sophisticated content 
delivery and management tasks when they request the MEC server. The server then either (i) 
delivers the requested content via the caching function, or (ii) forwards the request message to 
the resourceful upper tiers, depending on what it finds during its content lookup. Similarly, the 
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architecture deals with any actor's request following the needs of execution. 
 
3.1 Experimental Design and Procedures 
The following conditions must be met for the suggested model to be widely implemented: (i) the 
mobile devices (Android smartphones) of the actors and (ii) the teachers' knowledge of the 
deployed system and responsibility for high-quality educational content. It was believed that the 
preexisting mobile cloud infrastructure would serve as the basis for the first pass at implementing 
the plan. The MEC server was pre-configured, and a performance efficiency test based on profiles 
was run before deployment. The services were analyzed for resource efficiency and adapted to 
fit the various Mobile Learning programs. The test was run with two sets of students, and the 
MEC server processed the requests for execution according to the specified compute and service 
parameters. 
 
3.1.1 System Configuration  
On the college campus, close to the edge computers, we set up the following components that 
would be used to carry out the use case. 
The application was launched on the edge server(s). To get the application duties done, many 
agents on the students' devices talked with the server. On the other hand, the server kept tabs on 
the processors and received data from them when necessary. 
a more advanced processing layer. 
Dell OptiPlex 9010/7010 model, Intel i7 3770 at 3.4 GHz, 16 GB RAM, 1 terabyte hard drive, 
AMD Radeon HD 7470 graphics card, Intel 82,579 LM Gigabit network adapter. Wireless DW 
1530 NW LAN with Windows 10 Pro as the operating system. 
Edge workloads from students' devices are computed and distributed by the server, which is a 
server capability. It organizes computing activities, manages resources, and combines results. 
To execute native computations, host and run programs, and include intelligent computing 
resources, students' mobile devices serve as edge devices (actors' devices). To divide up 
execution duties, these devices coordinate with a central server. 
Edge node: any device, such as an edge gateway or edge server, that participates in and aids edge 
computing. 
An edge cloud is a private cloud that can also function in a public cloud environment. When 
devices' calculation needs exceed their capabilities, this system makes available a novel 
computing platform at their disposal. As a result, bandwidth issues are resolved, and delay 
between processing devices is drastically reduced. Applications and network workloads that can 
be deployed to various edge nodes are managed by the orchestration features. 
An on-campus data center that oversees local resources, data analytics, and dashboards to boost 
workload performance is what we call a "hybrid multi-cloud" in the world of higher education. 
It makes use of Amazon Web Services and Google Cloud Platform infrastructure following 
service-level agreements. 
Liberal Arts and Sciences The LMS (Blackboard) is a treasure trove of educational programs and 
resources. It runs the learning program, such as MagicPlan (iOS/Android), and an accompanying 
Android app, allowing the authorized Mobile Learning actors to carry out their duties. The layer-
based edge infrastructure is where the learning application is deployed. 
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3.1.2  Prerequisites for Carrying Out Use Cases 
In this research, an Mobile Learning use case was implemented on the institution's mobile cloud 
infrastructure via a MEC on-premises strategy, small cell networks, and the 4G network 
standards. Using the MEC platform, students' devices, a variety of virtual network functions 
(VNFs), and MEC software, this method represents a private deployment option. The deployment 
ensures the highest quality of experience (QoE) and real-time content delivery by making use of 
the radio conditions offered by MEC (specifically, the RNIS). Connectivity, VPN, and MEC 
services are orchestrated by the facilitators and consumed via APIs [37]. 
Practical Example: Thirty civil engineering students were given a deadline to use the mobile LMS 
to take measurements of two campus buildings still in the development phase. They were required 
to finish the measurements, compile a comprehensive report on the two structures, and hand it to 
their teacher. Students worked in groups of 10 and 20, and each utilized a mobile camera to take 
measurements using an architecture program like MagicPlan (iOS/Android). During the process, 
students were involved in a video conference, factors of dissemination, and usability. 
 
3.1.3 Flowchart of Architecture-Based Use-Case Execution 
First, students use their mobile devices to log into the Mobile Learning platform (see Fig. 3). 
Second, the system's MEC server receives request messages (request profile) that contain the 
information and computational demands created by the students' devices. 
Third, the MEC server examines the learner's request message profile, figures out what 
computing resources it needs, and carries out execution duties according to the request message 
profile (on the same layer). 
Fourth, the MEC server transmits the completed task's results via the requested result profile. 
This process is carried out for each profile of a request message. 
Step 5: Neighboring servers (edge cloud) in the same layer or the higher tier of the architecture 
hierarchy (currently not covered under this article) receive the request message profile that 
requires intense processing resources and exceeds the MEC server capabilities. 
 
3.2 Appraisal of Efficiency 
The scientific evaluation was based on two factors: (i) a series of simulations with a varying 
number of students, and (ii) a real-time application execution with 30 students. Several MEC 
simulation programs, such as EdgeCloudeSim, iFogSim, and others described in Ref. [38], were 
considered for the implementation. CloudSim and Clou- dAnalyst [39] are two examples of 
mobile cloud framework simulation tools that have been investigated. But EdgeCloudSim and 
CloudSim were used to model the system and gauge its efficiency. The performance measures of 
delay, reaction time, and energy efficiency were examined after initially considering certain 
ISO/IEC 25023 standard measurements. 
We designed a multi-hop overlay network (MEC) topology with three tiers of egress nodes. At 
the top level of the architecture, one wireless router connected all MEC servers, with an expected 
throughput of 80–100 Mbps. Each server's capabilities were taken into account, and a maximum 
of 200 migration requests were determined to be an optimal number of actors. To quantify the 
difficulty of a computation, a target number of central processing unit cycles was established. For 
instance, each MEC server could have to execute a migration request requiring one gigacycle of 
computing power in as little as 0.4 seconds. Thus, we compare the efficiency of execution 
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between the following architectures: (i) a flat MEC, (ii) a MEC with a series of hierarchical levels, 
(iii) a mobile cloud, and (iv) the proposed design. 
Figures 4 and 5 depict typical delay behavior and time-to-student requests for simple 
computations made to the server-based functional architecture. It is important to note that the 
following designs only take into account the server processing time for migrated requests when 
calculating the average delay time. 
In a flat MEC architecture, the MEC server is set up close to the buildings from which students 
send computation requests for assigned tasks across a wireless network. For migrating tasks, it 
conducts computation with minimal delay, while for new computations, the average delay grows. 
When the amount of computation required exceeds the server's computing capacity, the requests 
are forwarded to the next available MEC server. 
As more and more computation is offloaded to the more reliable upper layers of a hierarchical 
MEC, it can offer lower delay than its flat counterpart. 
When compared to the other two architectures, the mobile cloud has a longer average delay time 
since the mobile data center is further away   
from the learners' devices that are issuing computation migration requests . 
Although average delay times are on the rise, the proposed architecture nevertheless delivers 
ultra-low delay services by moving the growing amount of computational requests to the higher 
levels of the network. To achieve low delay on average, the moved jobs locate more potent 
computing MEC servers across the hierarchy layers. It solves the slowness of other designs' 
computations by avoiding round-trip delays. 
Learners' average response time for downloaded content is depicted in Fig. 6. Using a digital 
library (or learning management system), students request the processing infrastructure necessary 
to obtain video lectures. We have measured how long it takes for the following architectures to 
respond on average when downloading the necessary content. 
By connecting to the closest MEC server, Flat MEC can provide mobile edge services, such as 
caching capabilities, at a faster rate than MCA. 
Multiple tiers of MEC: it responds to requests for content migration from students and faces 
growing difficulty keeping up with demand. The performance of MEC varies with an increase in 
content transmission requests and is increasingly burdened by demands from neighboring MEC 
servers, which slow down the architecture due to delays in searching for neighboring servers. 
Content requests are fulfilled by the mobile cloud according to the resources available in the 
mobile cloud data of the requests made by the students to the framework, and as the number of 
requests increases, the downloading time also increases. 
The proposed architecture places more responsibility for computing at the upper levels of the 
system. The requested content can be downloaded quickly from the MEC server because of its 
content caching capability. If that fails, queries from students are forwarded to a nearby MEC 
server or higher in the architecture stack. It has a faster download speed than the other three since 
its response time is lower. 
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Fig. 1.  MEC Mobile Learning layered architecture overview 

 

 
Fig. 2.  The fundamental architectural layers 
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Fig. 3.  use cases might play out in the proposed architecture. 

 

 
Fig. 4.  Testing the effectiveness of delay. 
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Fig. 5. Monitoring and analysis of delay in real-time. 

 
4. Result and Discussion 
4.1Newness in Architectural Design 
The suggested architecture is the purpose of this research is to identify potential applications for 
machine learning in cutting-edge technologies including the Internet of Things (IoT), edge-fog 
architectures, artificial intelligence (AI), and the 5G network (Research Question 1). In addition, 
we want to investigate how edge-cloud computing affects the effectiveness of m-learning 
processes (RQ2). The study also shows the proposed design to enhance performance efficiency 
for its users across subject areas. 
This research reaffirms the notion that existing cloud-based m-learning designs improve m-
learning performance by taking advantage of cloud features [8]. These architectures can process 
requests from actors in an efficient, reliable, low-cost, and energy-saving manner [26]. Despite 
these benefits, these models have serious drawbacks, such as poor delay, security, and platform 
support from a wide range of service providers. 
The performance of m-learning and its adoption by its users are both negatively impacted by 
delay delay. The efficiency of the system and the effectiveness of m-learning are degraded by the 
presence of delay delays. Most of these problems could be solved by the development of ECPs 
[21,22,30]. Education is already benefiting from edge-fog computing [21]. The purpose of this 
research is to investigate such opportunities for improving the effectiveness of m-learning. 
Computing paradigms like multi-access edge computing architecture [17] pay special attention 
to the delay problem and provide consumers with ultra-low delay. 
Supporting m-learning actors, instructors, and educational institutions while also influencing user 
acceptability is what MEC is now doing. 
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Fig. 6.  Analysis of content download speeds. 

 
first of its sort to our knowledge, as it combines the advantages of edge computing with a 
lightweight design for use in a more traditional institutional setting. It provides quick connectivity 
to the MEC server of the layer and the institution's mini data centers. It provides significantly 
faster response times, less strain on radio access capacity, and shorter response times. It's efficient 
in all areas of study, helps protect sensitive information, and keeps applications running even if 
the network goes down. When m-learners visit the learning management system (LMS) during 
peak scenarios, for instance, the institution's ability to handle the volume of requests is tested. As 
a result, it increases the system's workload, networking requirements, delayed responses, and 
diluted performance. The current architecture is remarkable in that it minimizes data about travel, 
processes data locally, deals with traffic, and maximizes productivity. Because of its 
decentralized nature, the MEC server can be placed nearer to the devices being used by students. 
It improves the quality of experience, impacts user acceptance, and executes computations locally 
by avoiding the main data center. It enables a service domain through the employment of small 
power cell stations near edge resources. 
 
4.2 Analyzing the Outcomes of Implementation 
Use case execution analysis and architecture performance against performance metrics. It was 
discovered that the mobile cloud's Flat MEC and HMEC levels performed poorly in terms of 
delay, with the proposed architecture bearing ultra-low delay outperforming both. Learners can 
expect faster computations and less waiting time using the proposed architecture. It guarantees 
satisfactory results by involving students in individualized learning through interactive lessons 
and challenging laboratory work. On the other hand, thanks to the LMS's ability to orchestrate a 
variety of academic solutions, teachers can track their student's progress in a dynamic, 
collaborative setting [34]. Detailed use cases, like intelligent video analytics, are encouraged by 
the outcomes of use case execution on the planned architecture. 
SWOT analysis of m-learning performance across ECPs. Since the suggested and edge-based m-
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learning architectures exhibit similar traits, this demonstrates that they both deliver consistent 
performance. Although fog-based systems have unique promise for m-learning applications, this 
research will not be focusing on them. 
 
4.3 The originality and benefits of architecture 
By adding unique techniques and deploying only one MEC server at the edge cloud, taking the 
observed use case into account, the suggested architecture differentiates itself from the flat MEC, 
which deploys multiple MEC servers at the same level. It provides ultra-low delay and rapid 
reaction time by doing away with the server's searching time of the flat MEC. It validates the 
functional needs of an edge-based architecture by putting the planned strategies into action. In 
other circumstances, where more resources are required, such as virtual reality and augmented 
reality-based mobile learning applications, it has drawbacks and ramifications. The following 
advantages are provided, and a comprehensive and prospective mobile learning model should be 
taken into account. 
 
4.3.1 From an architectural point of view 
Delay, round-trip time, security, numerous hops, and bandwidth consumption are only some of 
the issues that mobile cloud architecture attempts to solve [10, 40]. 
Features cutting-edge implementations of QoE enhancements, such as localized social ecology, 
adaptive learning, and real-time computation. 
 
4.3.2 The views of students and educators 
Creates a unified system that uses common protocols, and supplies the software and educational 
materials needed to get started. 
An institutional learning management system (LMS) facilitates two-way contact between 
students and instructors and content delivery to students' edge devices. 
Motivates students more makes the most of multimedia interactions, and maximizes the use of 
learning resources. 
Offers insightful metrics for learners and dynamic, upgradable content for performers. 
 
4.3.3 The View from the Institutional Level 
Facilitates high dependability of the institution's LMS learning applications and supplies 
consolidated learning performance metrics and analytics for institutional uses; integrates with the 
existing institution's IT infrastructure and leverages interoperability standards. 
Saves money on bandwidth by processing data on-site, and boosts safety by storing sensitive data 
at the institution's physical facilities. 
 
4.3.4  How Do Learning Management Systems Work? 
An LMS is a database that houses your company's online training courses, resources, and data. 
Users can access the system with the specified credentials. User permissions are a standard 
element of most LMSs, letting admins decide who gets to use which parts of the system and 
which courses. 
Once training has begun, managers can track employee progress and performance using online 
tests and surveys to ensure everyone is staying on track. This information can be analyzed in the 
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LMS itself, or synchronized with an HRIS or other talent management tools, to find connections 
between training and things like job satisfaction, promotion opportunities, and turnover Fig. 7 
shows the top future of LMS. 

 
Fig. 7. The top future of LMS 

 
5. Issues, Restriction, Implications, and Prospective Paths 
   Even at this early stage of development, the use case implementation verifies the goals of the 
proposed architecture, namely, the acquisition of ECPs features to enhance m-learning 
performance. It establishes a foundation for running more involved use cases that call for ECP 
capabilities. For instance, real-time video analytics with AI and ML algorithms will make 
substantial use of fog levels. However, obstacles and restrictions have been encountered during 
use case execution. 
Challenges: Finding a good spot on the college campus and setting up the MEC server at the 
network's edge have been the first orders of business ever since the idea for the study was 
conceived. To ensure the synchronization of MEC deployment into an NFV environment, there 
is required to be strong between execution scenarios and ETSI NFV. Since the number of m-
learning actors was growing, the difficulty became more severe during the actual implementation 
in real-time. Potential obstacles include an expanding cast of characters, connections, radio access 
bandwidth, license, and setup. Additionally, the execution delay estimation and data portability 
costs were serious problems when nodes in the local network were able to collect data or make 
decisions[41][42]. 
The existing architecture has limitations due to its immaturity and its layered nature. At the most 
basic level of the infrastructure, a single MEC server was set up. University learning management 
system (LMS) interoperability, delay, and reaction time were primary design considerations in 
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the architecture [43]. 
The architecture has far-reaching implications, as it provides ultra-low delay and improves 
execution efficiency. The efficiency was evaluated based on the given requirements for the use 
case and varies depending on the network's connectivity and how the small cells are managed 
[44]. By adhering to the architectural design principles, MEC can enhance the performance of 
delay and response time. Designers need to consider these consequences when making new kinds 
of buildings [45 ,46]. 
The Way Forward: There is room for improvement in the current architecture to accommodate 
new computing paradigms like fog [47].   In the future, it will also include round trips to the MEC 
server when measuring the same metrics, but for now, it just takes into account the time it takes 
for students to make a request. Additionally, a number of MEC servers, including the flat MEC 
with its privileged communication, mobile orchestration, and other IoT devices, can be placed at 
the edge layer. Cell zooming management enables the institution's tiny data center to maximize 
its potential for saving money on energy costs [48 ,49]. 
The mobility model's decision-making interfaces and interfaces are currently under integration. 
MEC platforms and interface-aware protocols can be used to create an interface management 
system. A multi-tire evaluation of the architecture's performance is made possible by the 
incorporation of an edge orchestrator [50]. To meet the demands of increasingly sophisticated 
use cases, mobile workloads, an edge data center for actors' learning analytics, and the need to 
scale out in terms of available resources, this advancement will be crucial [51]. The present 
framework and MEC-based learning models will be affected by the inclusion of mobility and 
connection functions[52, 53]. 
If students' gadgets are incompatible, cost-cutting measures regarding computers and programs 
can be investigated. 
 
6. Conclusion 
     The research described here focuses on the possibilities of new computing paradigms to 
reduce the prevalence of drawbacks to m-learning, such as delay and slow response times. This 
research contributes new knowledge by proposing an edge-based m-learning architecture and 
deploying a single MEC server at the edge layer by ETSI MEC ISG requirements. It uses the 
school's mobile cloud to power the learning management system (LMS) and any other necessary 
learning apps, such as MagicPlan (iOS/Android). The students were using video conferencing on 
their devices with the program running on those devices to take measurements of the building's 
facilities. A rapid response time and ultra-low delay in transmitting video material are just two 
of the benefits that have been demonstrated by early implementation results. It allows for 
excellent quality of experience for m-learning actors, maintains sensitive data in local storage, 
and delivers insightful learning analytics. However, the efficiency of performance depends on 
the actors' connectivity to the server, the architecture's design approach, and the administration 
of the small cells. Delay and response time are solely taken into account by the design when it 
comes to requests made by students to the MEC server. The flexibility of the architecture will 
allow for the incorporation of various interfaces and decision-making processes, and the 
performance of the mobility model will increase as a result. Simulation experiments appear to 
support the claim that the proposed architecture can improve response times by 15% to 40% for 
tasks where the level of response increases with the number of computing requests, thanks to the 
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migration of these requests to higher, more powerful layers. The addition of an edge orchestrator 
affects MEC-based m-learning models and broadens the scope of the underlying architecture. 
IoT-based m-learning use cases are supported, and the architecture's flexibility makes it possible 
to implement a wide range of advanced applications. 
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